Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562800

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.

4.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586029

RESUMO

Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which was exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition. In vivo experiments using a novel, orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.

5.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562774

RESUMO

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.

6.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464081

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

7.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464251

RESUMO

The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.

8.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328238

RESUMO

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

9.
Med Oncol ; 41(3): 76, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393424

RESUMO

Alveolar soft-part sarcoma (ASPS) is a rare soft tissue tumor with a broad morphologic differential diagnosis. While histology and immunohistochemistry can be suggestive, diagnosis often requires exclusion of other entities followed by confirmatory molecular analysis for its characteristic ASPSCR1-TFE3 fusion. Current stain-based biomarkers (such as immunohistochemistry for cathepsin K and TFE3) show relatively high sensitivity but may lack specificity, often showing staining in multiple other entities under diagnostic consideration. Given the discovery of RNA in situ hybridization (RNA-ISH) for TRIM63 as a sensitive and specific marker of MiTF-family aberration renal cell carcinomas, we sought to evaluate its utility in the workup of ASPS. TRIM63 RNA-ISH demonstrated high levels (H-score greater than 200) of expression in 19/20 (95%) cases of ASPS (average H-score 330) and was weak or negative in cases of paraganglioma, clear cell sarcoma, rhabdomyosarcoma, malignant epithelioid hemangioendothelioma, as well as hepatocellular and adrenal cortical carcinomas. Staining was also identified in tumors with known subsets characterized by TFE3 alterations such as perivascular epithelioid cell neoplasm (PEComa, average H-score 228), while tumors known to exhibit overexpression of TFE3 protein without cytogenetic alterations, such as melanoma and granular cell tumor, generally showed less TRIM63 ISH staining (average H-scores 147 and 96, respectively). Quantitative assessment of TRIM63 staining by RNA-ISH is potentially a helpful biomarker for tumors with molecular TFE3 alterations such as ASPS.


Assuntos
Carcinoma de Células Renais , RNA , Sarcoma Alveolar de Partes Moles , Proteínas com Motivo Tripartido , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hibridização In Situ , Proteínas Musculares/genética , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases
10.
Am J Surg Pathol ; 48(2): 163-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994665

RESUMO

Birt-Hogg-Dubé (BHD) syndrome is associated with an increased risk of multifocal renal tumors, including hybrid oncocytic tumor (HOT) and chromophobe renal cell carcinoma (chRCC). HOT exhibits heterogenous histologic features overlapping with chRCC and benign renal oncocytoma, posing challenges in diagnosis of HOT and renal tumor entities resembling HOT. In this study, we performed integrative analysis of bulk and single-cell RNA sequencing data from renal tumors and normal kidney tissues, and nominated candidate biomarkers of HOT, L1CAM, and LINC01187 , which are also lineage-specific markers labeling the principal cell and intercalated cell lineages of the distal nephron, respectively. Our findings indicate the principal cell lineage marker L1CAM and intercalated cell lineage marker LINC01187 to be expressed mutually exclusively in a unique checkered pattern in BHD-associated HOTs, and these 2 lineage markers collectively capture the 2 distinct tumor epithelial populations seen to co-exist morphologically in HOTs. We further confirmed that the unique checkered expression pattern of L1CAM and LINC01187 distinguished HOT from chRCC, renal oncocytoma, and other major and rare renal cell carcinoma subtypes. We also characterized the histopathologic features and immunophenotypic features of oncocytosis in the background kidney of patients with BHD, as well as the intertumor and intratumor heterogeneity seen within HOT. We suggest that L1CAM and LINC01187 can serve as stand-alone diagnostic markers or as a panel for the diagnosis of HOT. These lineage markers will inform future studies on the evolution and interaction between the 2 transcriptionally distinct tumor epithelial populations in such tumors.


Assuntos
Adenoma Oxífilo , Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Cidades , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia
11.
Proc Natl Acad Sci U S A ; 120(49): e2314416120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011559

RESUMO

Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Humanos , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Imunoterapia/métodos , Lipídeos , Neoplasias/genética , Neoplasias/terapia
12.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904960

RESUMO

There is tremendous need for improved prostate cancer (PCa) models. The mouse prostate does not spontaneously form tumors and is anatomically and developmentally different from the human prostate. Engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts represent an alternative but rely on an immunocompromised host. Accordingly, we generated PCa murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic PCa and the impact of hormonal and immunotherapies. These mice maintain multiple human cell lineages, including functional human T-cells and myeloid cells. In 22Rv1 xenografts, subcutaneous tumor size was not significantly altered across conditions; however, metastasis to secondary sites differed in castrate huNOG vs background-matched immunocompromised mice treated with enzalutamide (enza). VCaP xenograft tumors showed decreases in growth with enza and anti-Programed-Death-1 treatments in huNOG mice, and no effect was seen with treatment in NOG mice. Enza responses in huNOG and NOG mice were distinct and associated with increased T-cells within tumors of enza treated huNOG mice, and increased T-cell activation. In huNOG-EXL mice, which support human myeloid development, there was a strong population of immunosuppressive regulatory T-cells and Myeloid-Derived-Suppressor-Cells (MDSCs), and enza treatment showed no difference in metastasis. Results illustrate, to our knowledge, the first model of human PCa that metastasizes to clinically relevant locations, has an intact human immune system, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.

13.
JCI Insight ; 8(15)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440313

RESUMO

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation. The frequency of NEPC is increasing since the widespread use of potent androgen receptor signaling inhibitors. Currently, there are no effective treatments for NEPC. We previously determined that LSD1 promotes survival of prostate adenocarcinoma tumors. However, the role of LSD1 in NEPC is unknown. Here, we determined that LSD1 is highly upregulated in NEPC versus adenocarcinoma patient tumors. LSD1 suppression with RNAi or allosteric LSD1 inhibitors - but not catalytic inhibitors - reduced NEPC cell survival. RNA-Seq analysis revealed that LSD1 represses pathways linked to luminal differentiation, and TP53 was the top reactivated pathway. We confirmed that LSD1 suppressed the TP53 pathway by reducing TP53 occupancy at target genes while LSD1's catalytic function was dispensable for this effect. Mechanistically, LSD1 inhibition disrupted LSD1-HDAC interactions, increasing histone acetylation at TP53 targets. Finally, LSD1 inhibition suppressed NEPC tumor growth in vivo. These findings suggest that blocking LSD1's noncatalytic function may be a promising treatment strategy for NEPC.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Humanos , Masculino , Adenocarcinoma/genética , Linhagem Celular Tumoral , Histona Desmetilases/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Am J Clin Pathol ; 160(6): 549-554, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499055

RESUMO

OBJECTIVES: Fluorescence in situ hybridization (FISH) assays for the detection of chromosomal rearrangements involving TFE3 and TFEB are considered the gold standard for the diagnosis of MiTF family altered renal cell carcinoma (MiTF-RCC). We reviewed 801 clinical TFE3/TFEB FISH assays performed at our tertiary-level institution between 2014 and 2023 on kidney tumors suspicious at the morphologic or biomarker level for MiTF aberrations. METHODS: We summarized and analyzed clinical information, TFE3/TFEB FISH results, and available biomarker staining results in a cohort of 453 consecutive kidney tumor cases suspicious for MiTF-RCC. RESULTS: In total, 61 of 434 (14%) kidney tumors were confirmed for TFE3 translocation; 10 of 367 cases (2.7%) were confirmed for TFEB translocation. Since TFEB amplification interpretation was implemented in our service line, 20 of 306 cases (6.5%) were diagnosed with TFEB amplification. Importantly, TFE3 and TFEB rearrangements were never co-detected within the same kidney tumor. Patients with TFEB amplification were significantly older (P < .001) than patients with TFE3 or TFEB translocation. Kidney tumors with TFEB amplification were seen to be at least 3 times as common as those with TFEB translocation. CONCLUSIONS: Clinical TFE3/TFEB FISH assays successfully identified and confirmed rare MiTF-RCC with TFE3 and TFEB rearrangements. Although morphologic and biomarker features associated with a kidney tumor may be suggestive of MiTF-RCC, clinical TFE3/TFEB FISH assays are crucial for a confirmation and definitive subclassification of patients with MiTF-RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Hibridização in Situ Fluorescente/métodos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética
15.
Neoplasia ; 42: 100910, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267699

RESUMO

BACKGROUND: Biliary tract cancers (BTCs) including intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder cancer, are rare but aggressive malignancies with few effective standard of care therapies. METHODS: We implemented integrative clinical sequencing of advanced BTC tumors from 124 consecutive patients who progressed on standard therapies (N=92 with MI-ONCOSEQ and N=32 with commercial gene panels) enrolled between 2011-2020. RESULTS: Genomic profiling of paired tumor and normal DNA and tumor transcriptome (RNA) sequencing identified actionable somatic and germline genomic alterations in 54 patients (43.5%), and potentially actionable alterations in 79 (63.7%) of the cohort. Of these, patients who received matched targeted therapy (22; 40.7%) had a median overall survival of 28.1 months compared to 13.3 months in those who did not receive matched targeted therapy (32; P < 0.01), or 13.9 months in those without actionable mutations (70; P < 0.01). Additionally, we discovered recurrent activating mutations in FGFR2, and a novel association between KRAS and BRAF mutant tumors with high expression of immune modulatory protein NT5E (CD73) that may represent novel therapeutic avenues. CONCLUSIONS: Overall, the identification of actionable/ potentially actionable aberrations in a large proportion of cases, and improvement in survival with precision oncology supports molecular analysis and clinical sequencing for all patients with advanced BTC.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Humanos , Medicina de Precisão , Neoplasias dos Ductos Biliares/genética , Neoplasias do Sistema Biliar/genética , Neoplasias do Sistema Biliar/terapia , Neoplasias do Sistema Biliar/patologia , Mutação , Genômica , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia
16.
Mod Pathol ; 36(6): 100146, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828361

RESUMO

Prostate cancer is a heterogeneous disease with several well-recognized morphologic subtypes and histologic variants-subsets of which are enriched for or associated with specific genomic alterations. Herein, we report a cohort of 4 unique prostate cancers characterized by intratumoral psammomatous calcification-which we have termed prostate cancer with psammomatous calcification (PCWPC). Clinicopathologic review demonstrates that PCWPCs are high-grade (grade group ≥3) tumors that involve the anterior prostate, and integrative targeted next-generation sequencing reveals recurrent hotspot IDH1 mutations. This morphology-molecular correlation is independently confirmed in The Cancer Genome Atlas prostatic adenocarcinoma cohort, with 3 of the 5 IDH1-mutant prostate cancers showing psammomatous calcification (rφ = 0.67; Fisher exact test, P < .0001). Overall, these findings suggest that PCWPC represents a novel subtype of prostate cancer enriched for an anterior location and the presence of hotspot IDH1 mutations. Recognition of these unique morphologic features could help identify IDH1-mutant prostate cancer cases retrospectively and prospectively-facilitating future large research studies and enabling clinical trial enrollment and precision medicine approaches for patients with advanced and/or aggressive disease.


Assuntos
Calcinose , Neoplasias Meníngeas , Meningioma , Neoplasias da Próstata , Masculino , Humanos , Estudos Retrospectivos , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Calcinose/genética , Calcinose/patologia , Isocitrato Desidrogenase/genética
17.
Cancer Cytopathol ; 131(2): 117-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264673

RESUMO

INTRODUCTION: The diagnosis of metastatic prostatic cancer (MPC) by fine needle aspiration (FNA) can usually be rendered by typical cytomorphologic and immunohistochemical (IHC) features. However, MPC diagnosis may be complicated by transformation to atypical phenotypes such as small cell carcinoma, typically under pressure from androgen deprivation therapy (ADT). Predictive and prognostic biomarkers can also be assessed by IHC. This study illustrates how careful assessment of cytologic and biomarker features may provide therapeutic and prognostic information in MPC. DESIGN: We reviewed our anatomic pathology archives for MPC diagnosed by FNA from January 2014 to June 2021. Clinical histories, cytology slides, and cell blocks were reviewed. Extensive IHC biomarker workup was performed, including markers of prostate lineage, cell-cycle dysfunction, Ki-67, neuroendocrine markers, PDL1, and androgen receptor splice variant 7. Cases were reclassified into three categories: conventional type, intermediary type, and high-grade neuroendocrine carcinoma (HGNC). RESULTS: Eighteen patients were identified. Twelve had conventional MPC, including six of six ADT-naive patients. Six of twelve (50%) with prior ADT were reclassified as intermediary or HGNC. Four intermediary cases included two with squamous differentiation and two with pro-proliferative features. Two HGNC cases had typical small cell carcinoma cytomorphology. Expression of PDL1 was identified in two cases and ARv7 in three cases. Five of five intermediary and HGNC patients died of disease versus six of eleven with with conventional type. CONCLUSIONS: Aggressive cytomorphologic variants were commonly identified in patients with prior ADT. Identification of nonconventional cytomorphology and increased proliferation can provide important prognostic information. Recognition of these changes is important for an accurate diagnosis, and the identification of high-grade variants can affect therapeutic decision-making. Clinically actionable biomarkers such as PDL1 and ARv7 can be assessed by IHC.


Assuntos
Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Biópsia por Agulha Fina , Carcinoma de Células Pequenas/diagnóstico , Neoplasias da Próstata/diagnóstico , Antagonistas de Androgênios , Carcinoma Neuroendócrino/diagnóstico , Biomarcadores , Neoplasias Pulmonares/diagnóstico
18.
Int J Surg Pathol ; 31(6): 1027-1040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36250542

RESUMO

Introduction. Chromophobe renal cell carcinoma (chromophobe RCC) is the third major subcategory of renal tumors after clear cell RCC and papillary RCC, accounting for approximately 5% of all RCC subtypes. Other oncocytic neoplasms seen commonly in surgical pathology practice include the eosinophilic variant of chromophobe RCC, renal oncocytoma, and low-grade oncocytic unclassified RCC. Methods. In our recent next-generation sequencing based study, we nominated a lineage-specific novel biomarker LINC01187 (long intergenic non-protein coding RNA 1187) which was found to be enriched in chromophobe RCC. Like KIT (cluster of differentiation 117; CD117), a clinically utilized chromophobe RCC related biomarker, LINC01187 is expressed in intercalated cells of the nephron. In this follow-up study, we performed KIT immunohistochemistry and LINC01187 RNA in situ hybridization (RNA-ISH) on a cohort of chromophobe RCC and other renal neoplasms, characterized the expression patterns, and quantified the expression signals of the two biomarkers in both primary and metastatic settings. Results. LINC01187, in comparison to KIT, exhibits stronger and more uniform expression within tumors while maintaining temporal and spatial consistency. LINC01187 also is devoid of intra-tumoral heterogeneous expression pattern, a phenomenon commonly noted with KIT. Conclusions. LINC01187 expression can augment the currently utilized KIT assay and help facilitate easy microscopic analyses in routine surgical pathology practice.


Assuntos
Adenoma Oxífilo , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Seguimentos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/patologia , Biomarcadores Tumorais/metabolismo , RNA , Diagnóstico Diferencial
19.
Hum Pathol ; 134: 102-113, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581128

RESUMO

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is an aggressive, rare genetic disease affecting the kidney and other organ systems. We constructed a specialized multi-institutional cohort of 20 primary FH-deficient RCC cases with aims of characterizing a new commercially available antibody, S-(2-succino)-cysteine (2SC). Herein, we present our findings on the biomarker characterization and performance of 2SC expression by immunohistochemistry (IHC) in FH-deficient RCC and other common and rare RCC subtypes. Morphological assessment revealed characteristic cytomorphologic features and a majority (55%) of FH-deficient RCC had mixed architectural growth patterns. We observed predominantly diffuse and strong cytoplasmic staining with limited nuclear positivity for 2SC staining on IHC. Receiver operating characteristic curves (ROC) for 2SC identified the threshold IHC score (cutoff) as 90, with the sensitivity and specificity being 100% and 91%, respectively. The findings of the present study along with the prior evidence in literature encourage utilization of 2SC as a positive marker along with the loss of FH expression by anti-FH IHC staining as a negative marker, in clinical and/or pathologic scenarios when considering FH-deficient RCC in the differential diagnosis. FH-/2SC+ may serve as a comprehensive IHC panel in identifying such cases and excluding morphologically similar entities.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Neoplasias Uterinas , Humanos , Feminino , Carcinoma de Células Renais/patologia , Cisteína , Fumarato Hidratase , Leiomiomatose/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Neoplasias Uterinas/patologia
20.
Histopathology ; 82(5): 684-690, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36564980

RESUMO

AIMS: Renal cell carcinoma (RCC) with clear cells and psammoma-like calcifications would often raise suspicion for MITF family translocation RCC. However, we have rarely encountered tumours consistent with clear cell RCC that contain focal psammomatous calcifications. METHODS AND RESULTS: We identified clear cell RCCs with psammomatous calcifications from multiple institutions and performed immunohistochemistry and fluorescence and RNA in-situ hybridisation (FISH and RNA ISH). Twenty-one tumours were identified: 12 men, nine women, aged 45-83 years. Tumour size was 2.3-14.0 cm (median = 6.75 cm). Nucleolar grade was 3 (n = 14), 2 (n = 4) or 4 (n = 3). In addition to clear cell pattern, morphology included eosinophilic (n = 12), syncytial giant cell (n = 4), rhabdoid (n = 2), branched glandular (n = 1), early spindle cell (n = 1) and poorly differentiated components (n = 1). Labelling for CA9 was usually 80-100% of the tumour cells (n = 17 of 21), but was sometimes decreased in areas of eosinophilic cells (n = 4). All (19 of 19) were positive for CD10. Most (19 of 20) were positive for AMACR (variable staining = 20-100%). Staining was negative for keratin 7, although four showed rare positive cells (four of 20). Results were negative for cathepsin K (none of 19), melan A (none of 17), HMB45 (none of 17), TFE3 (none of 5), TRIM63 RNA ISH (none of 13), and TFE3 (none of 19) and TFEB rearrangements (none of 12). Seven of 19 (37%) showed chromosome 3p deletion. One (one of 19) showed trisomy 7 and 17 without papillary features. CONCLUSIONS: Psammomatous calcifications in RCC with a clear cell pattern suggests a diagnosis of MITF family translocation RCC; however, psammomatous calcifications can rarely be found in true clear cell RCC.


Assuntos
Calcinose , Carcinoma de Células Renais , Neoplasias Renais , Feminino , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética , Aberrações Cromossômicas , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...